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coordinate estimated, to a first-order approximation, 
by Cruickshank & McDonald (1967) in the case of 
least-squares refinement. The same kind of considera- 
tions reported by these authors on the vanishing of the 
coordinate errors when the reflexions are collected ac- 
cording to a tetrahedral arrangement of the spherical 
octants, also applies to the present case. 

Use of IFo (H)I and ao (H) 

If we carry out an electron density computation using, 
in a relation like (19), phases c~°(H)[or c~'(H)] and 
IFo(H)I it may be deduced, on the basis of Ramachan- 
dran's fl synthesis (Ramachandran, 1964), that the map 
will show maxima in the correct rj positions but they 
are incorrect in shape and weight. Further, there are 
also satellite maxima, whose weights depend on the 
Aft '  values, in positions defined by combinations of 
interatomic vectors. 

To a first order approximation we can write 

IFo(H)l exp [ic~°(H)]= ]F0(H)I" IF°(H)~I exp [ia°(H)] 
IF°(H)I 

~ IF°(H)I2 exp [i~°(a)]. (29) 
-IF0(H)I 

If we assume that there are P and Q atoms in the unit 
cell hav ing f  ° (orf f )  and Aft '  scattering factors respec- 

tively (the Q atoms being in the same positions as the 
P atoms), the analogy with the fl synthesis is evident by 
putting, according to the notation of Ramachandran, 

Fo(H) ~ FN and F°(H)--+ Fv (30) 

where N =  P + Q. 
Consequently, it must be noted that the same atoms, 

with the same Aft '  values, when packed in different 
structures, give rise to different spurious peaks and 
errors. Furthermore, there is, at present, no direct 
comparison between the magnitudes of these errors 
and of those described in the IFo(H)I and a(H) case. 
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Absolute Measurement of Structure Factors of Si 
by Using X-ray Pendelliisnng and lnterferometry Fringes 
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The absolute values of crystal structure factors IFal of silicon were determined accurately for five low- 
order lattice planes, with probable errors of less than 0.05 %. The principle of the measurement is to take 
the ratio of IFgl and IF01, which are geometrically proportional to the spacings of the Pendell6sung and 
interferometric fringes respectively. Thus, this method is not only based on a principle appropriate for 
a truly absolute measurement, but the difficulty in determining the proportional factors is essentially 
eliminated, and the experimental errors can be reduced to about 0.1%. Some geometrical corrections, 
however, are required to attain an accuracy better than this. These corrections as well as the theoretical 
ones are discussed and the necessity of taking into account the effect of the nuclear Thomson scattering 
is pointed out. The consistency of the results was checked with respect to the following points; (i) I Fgl -- IF-g I, 
(ii) led values being independent of whether the interference fringes in the direct beam or those in the 
Bragg-reflected beam are used, and (iii) the agreement of IFgl for different specimens. The atomic 
scattering factors Ifgl standardized at 20°C are as follows; 111 : 10"660,220: 8"460, 333 : 5"839, 440:  5"404, 
and 444:4"168. A comparison is made with the values of other authors. 

1. Introduction 

One of the important topics in crystallography is the 
determination of accurate values of structure factors on 
an absolute scale. The methods can be classified in two 

categories; (i) the methods based on the kinematical 
theory and (ii) those based on the dynamical theory of 
crystal diffraction. Obviously, the former is universal 
but cannot be very accurate, while the latter holds the 
possibility of obtaining very accurate values for limited 
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kinds of substances. The second method is further clas- 
sified into two groups, (i) the methods based on the 
rocking curves and (ii) those based on interference 
fringes due to the dynamical diffraction. Among the 
methods of the second group, one can use Pendell6sung 
fringes in Laue cases (Kato & Lang, 1959; Hattori, 
Kuriyama, Katagawa & Kato, 1965; Yamamoto, 
Homma & Kato, 1968; Kato, 1969; Hart & Milne, 
1969; Persson, Zielifiska-Rohozifiska & Gerward, 
1970), Borrmann and Lehmann's fringes in Laue- 
Bragg-Laue cases* (Borrmann & Lehmann, 1963; 
Lehmann & Borrmann, 1967) and Hart & Milne's 
(1970) fringes for transmitted waves through two crys- 
tal slabs. 

The present authors (Kato & Tanemura, 1967) pro- 
posed a method of determining the structure factors 
IFol on a truly absolute basis by combining the fringes 
appearing in Pendell~Ssung and interferometry exper- 
iments. The interferometer used is essentially similar 
to that of Bonse & Hart (1965). This paper presents the 
experimental atomic scattering factors, I£1, for five 
low-order reflexions from silicon single crystals. The 
probable errors from independent measurements were 
less than 0.05 %. 

In § 2, the principles for the ideal geometric condi- 
tions are described and in §§ 3 and 5, the experimental 
technique and some preliminary experiments are de- 
scribed. Since the probable errors in measuring the 
fringe spacings were reduced to n0.1-0.03 %, several 
conceivable experimental and theoretical errors larger 
than 0.02 % are discussed in § 4. In the final section, 
the Ifol values obtained are compared with the results 
of the authors mentioned above. 

* The terminology is explained in the paper of Saka, Kata- 
gawa & Kato (1971). 

X-rays 

s I I 

Dg 

[ ~ specimen 

M I 

A I 

/ 
Bg Bo 

Fig. 1. The principle of X-ray interferometry. 

2. Principles 

For an ideal geometrical arrangement, the spacing Ao 
of the X-ray interferometry fringes and the spacing Ag 
of the Pendelltisung fringes are proportional to the zero 
and gth order structure factors, ]Fol and IF o] respectively. 
The present method essentially determines IFo[/IFol by 
taking the ratio of Ao and A o, which are measurable 
from the interferogram and the diffraction topograph 
respectively. 

An X-ray interferometer of the Mach-Zehnder type, 
developed by Bonse & Hart (1965a,b), was constructed. 
The interferograms used are, however, different from 
theirs. Those obtained by Bonse & Hart are of the 
traverse type, whereas the present ones are of the sec- 
tion type, the terminology being that used for Lang's 
X-ray topographs (Lang, 1957, 1959; Kato & Lang, 
1959). 

The interferometer is composed of three crystal 
plates, which are hereafter denoted by S, M and A as 
shown in Fig. 1. A very narrow beam is used as the 
incident beam. After penetrating the crystal S, both 
the direct and Bragg-reflected beams are broadened as 
in the case of the Borrmann fan. Similarly, the beam- 
widths are doubled and trebled after passing through 
the crystals M and A respectively. If we insert a wedge- 
shaped specimen C in the beam Do, interference fringes 
appear in both the beams B0 and B o. Interference oc- 
curs owing to the phase difference pc between the two 
waves arriving at a point on the photographic plate. 
The increment of the path length of the beam Do in the 
specimen, corresponding to an increment 2n in the 
phase ~Oc [cf. Fig. 2(a)], is given by 

AC=2/lnc-l l=2.(~-~-~)\  ezl/lFo, (1) 

where nc is the refractive index of the specimen for 
X-rays, 2 the wavelength, v the volume of the unit cell, 
m, c and e are the physical constants having their usual 
meanings, and IF0[, is essentially the total number of 
electrons contained in the unit cell. 

The observed fringe spacing Ao is given by 

Ao=A0Cq~o (2) 

where q~0 is a geometrical factor depending on the 
orientation of the entrance and exit surfaces with re- 
spect to the X-ray beam. In the particular case where 
the entrance surface is perpendicular to the beam, 40 
is cot ~0, where ~0 is the wedge angle between the cross- 
section of the specimen and the plane of the incident 
beam. 

As to the Pendell6sung fringes, the diffraction topo- 
graphs of the section type are used as by Hattori, Kuri- 
yama, Katagawa & Kato (1965). As shown in Fig. 2(b), 
an intensity field characterized by the hyperbolic Pen- 
dell/Ssung fringes, with the asymtotes ET and ER, ap- 
pears within the specimen. The fringe spacing Ao c along 



S. T A N E M U R A  A N D  N. K A T O  71 

the lattice plane, on which the apexes of the hyperbolae 
lie, is given by 

[mcZ-'~ /]Fg[ (3) AC= (co~B) (~-~--~ ) \ e z } 

including the effect of polarization of the X-rays, where 
On is the Bragg angle. PendelliSsung fringes in a section 
pattern are an oblique projection of the fringes appear- 
ing on the exit surface. Therefore, the observed fringe 
spacing A o along the bisector of the wedge pattern is 
connected with the fringe spacing Ao c by a geometrical 
factor ~g: 

Ao= Aeo ~o . (4) 

Examples of section topographs are shown in Fig. 3. 
When the beam paths are identical for both the inter- 

ferometer and Pendellrsung experiments, the factors 
q~0 and ~bo are related by ~g=Aq~0, where A is a geo- 
metrical factor given by 

cos (co/2) 
A - I/cos co x I/1 - t a n  z c~ tan 20e (5) 

(see Appendix A). In this expression, co is the wedge 
angle of the section topograph and 0~ is the angle shown 
in Fig. 7, which indicates the deviation from the condi- 
tion of symmetrical Laue geometry with respect to the 
exit surface. By combining equations (1), (2), (3) and 
(4), the ratio IFol/IFol is given by 

IFol/IFol = (2 cos 0 B ) ( - - ~ a ) . A .  (6) 
1 A0 

The structure factor [Fa[ can be determined in this way 
on the scale of IF0] by obtaining the fringe spacings A0 
and A s and the wedge angle co. In contrast to the case 
of Hattori, Kuriyama, Katagawa & Kato (1965), the 
final result is not sensitive to the angle co since it appears 
only through the cosine in equation t5). # 

In practice, interference fringes of the moir6 type 
appear in B0 and Ba beams in Fig. 1 even if no specimen 
crystal is inserted in Do. These fringes are called the 
intrinsic fringes and are shown in Fig. 4(a). They are due 
to the lattice distortion and faults in the interferometer 
crystal. The real phase difference in the experiment of 
interferometry is, therefore, given by 

q~, = 09c + (#~ (7) 

instead of ~0c, where the additional phase ~0~ is the in- 
trinsic phase difference between two optical paths di- 
vided by the splitter S. An example of the fringes with 
a wedge-shaped specimen is shown in Fig. 4(b). 

In the simplest case, in which the phases are linear 
with respect to the beam height along which the fringe 
spacings are measured, the true spacing A0 is given by 

1 "1 1 
- (8) 

Ao A~ At 

* The factor (1-tan2 0~ tan20B)I/2 is regarded as a correc- 
tion term. 

where Ar and At are observed spacings in the exper- 
iments respectively with and without the specimen. 
The assumed linearity was examined experimentally, 
and the more refined treatments will be discussed later. 

3. Experimental  
3.1 Specimens 

A single crystal was supplied from a commercial 
source. It was grown along the [111] axis. The speci- 
mens were prepared in a form of 20 ° wedges by polish- 
ing, with the use of a metal jig. Three types of speci- 
mens with different orientations were prepared. In type 
I, one of the wedge surfaces was (111), i.e. perpendic- 
ular to the growth direction; in type II, the wedge sur- 
face was (211), parallel to the growth direction; in type 
III, the wedge surface was perpendicular to (T11) which 

Do 

E 

N Ao 

(a) 

X-rays 

I ~ 208 / 
specimen / ~ \ 

y '-.< ^~ 

w" (b) 

Fig. 2. (a) The relation between the observed spacing A0 and 
the spacing Ao c which is virtual in the crystal. (b) The 
relation between Pendellrsung fringes in the crystal and in 
the section topograph. 
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is oblique to the growth direction. After polishing, sur- 
face strains were etched off using hydrofuoric acid. 

3.2 Interferometer 
The Bonse-Hart interferometer was made from a rod 

of Si single crystal, which also was grown along the 
[111] axis. The lattice plane used for Bragg reflexion 
was (220) in S, M and A crystal plates in Fig. 1. The 
thickness of each plate was 2.10 mm. The distances be- 
tween S and M, and between M and A were 16.5 ram. 
Ag Kal radiation was used throughout the present ex- 
periment. Under these conditions, the attenuation in- 
dex/~0t for a single plate was about 1.6. The width of 
the coherent wave front in both B0 and B o beams was 
about 1.8 ram. 

3.3 Spectrometer 
A new type of double crystal spectrometer was de- 

signed, in which two crystal stages, A and B, were ar- 
ranged vertically. The stage A was removable from the 
X-ray path by an upward traverse, and the stage B was 
movable by a horizontal traverse. Each stage was ro- 
tated precisely about a vertical axis. The incident 
X-rays were collimated by two vertical slits so as to 
pass through the rotation axis of the specimen, the 
parallelism being checked to an accuracy of 10' of arc. 

The interferometer crystal was suspended from the 
stage A with four hooks, the lattice plane of the inter- 
ferometer being made vertical by adjusting the lengths 
of the hooks.* The specimen crystal was mounted on 
a goniometer head attached to the stage B. Again, the 
lattice plane was made vertical. For the present exper- 
iment, it was also necessary for the entrance surface to 
coincide with the plane determined by the rotation axis 
and the horizontal traverse direction of the stage B. 
Actually, by the use of an optical microscope, it was 
confirmed that the angle between the entrance surface 
and the vertical axis was less than 5', and the horizontal 
distance between the rotation axis and the entrance 
surface was less than 10/~. The angle between the en- 
trance surface and the traverse direction was estimated 
to be less than about 1 °. These conditions were kept 
before and after both the rotation and the small hori- 
zontal traverse of the stage B necessary for taking Pen- 
dell/Ssung and interferometry fringes (see § 3.4). 

The holder of the photographic plate was put on the 
counter arm. This arm was rotated about the same ver- 
tical axis as that for the specimen so that the plate 
could be set perpendicular to the Bragg-reflected beam 
within the accuracy of machining. The relative angular 
position of the counter arm was read to an accuracy of 
1' of arc. 

The apparatus including the X-ray source was set 
up in a room in which the temperature was controlled 
by an electronic device to within +2°C. A series of 
Pendell/Ssung and interferometry experiments with and 

* This condition was attained when the narrowest rocking 
curve was obtained. 

without the specimen was performed at the same tem- 
perature. Different series of experiments, however, 
were performed between 20 and 30°C. 

3.4 Experimental procedure 
The first step of the experiment was to take Pendel- 

1/Ssung fringes. In this experiment, the interferometer 
crystal was first lifted above the X-ray beam. Next, inter- 
ferometry fringes with the specimen were recor- 
ded. Beforehand, the specimen had been rotated 
through the Bragg angle 0B and displaced by the half- 
width of the beam Do on the entrance surface 
(=310/~). The accuracy of the rotation was about 1' 
and the displacement was measurable down to 10/1. By 
this procedure, the requirement, q)o=Aq)o, mentioned 
in connexion with equation (5) was fulfilled with suf- 
ficient accuracy. After changing the geometry of the 
specimen, the interferometer crystal was brought down 
in a position and orientation, such that the Bragg con- 
dition was satisfied. The counter arm, on which the 
plate holder was fixed, was turned to make the plate 
nearly perpendicular to either one of the beams, B0 and 

Finally, the specimen crystal was removed from the 
beam Do, and the intrinsic interferometry fringes were 
recorded. In some cases, the specimen was brought 
back to the original position and the taking of inter- 
ferometry and intrinsic fringes repeated. 

The methods for obtaining the spacing A o of the 
Pendell/Ssung fringes and the wedge angle co of the 
section topograph were the same as those described by 
Hattori, Kuriyama, Katagawa & Kato (1965). The 
fringe spacing was measured along the bisector (y) of 
the wedge pattern [Fig. 2(b)]. In the case of the inter- 
ferometry and intrinsic fringes, the spacings were meas- 
ured along the central line of each topograph. In deter- 
mining the spacings of the three kinds of fringes, care 
was taken to use the fringes corresponding to the same 
region of the beams. Because of the principles of the 
present method, it was not necessary to calibrate the 
distance measurements on an absolute scale. 

4. Preliminary experiments 

(1) As mentioned in the last section, we need to ro- 
tate and traverse the specimen before taking inter- 
ferometer fringes in order to satisfy the condition ~o = 
A~0. If, however, the rotation axis does not lie on the 
entrance surface, the specimen may be displaced in an 
undesirable way. The rotation angle may also include 
some errors. When the wedge of the specimen is not 
accurately shaped, the ideal geometric conditions may 
notbe fulfilled. In order to check the errors owing to these 
faults in the geometry, the following experiments were 
carried out. 

(i) The change in the fringe spacings A, was exam- 
ined over a traverse range of 2 mm (see Table l a). 

(ii) The change of Ar was examined over a rotation 
angle of 1° [see Table l(b)]. 
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Table 1. The fringe spacings 

(a) Different entrance points 

Position Ar (mm) 

Po 0 . 1 3 4 6 1  

PR 0 . 1 3 4 7 1  

PL 

Po 

0 . 1 3 4 6 1  

0 . I  34  7 2  
Pt Po PR 

(b) Different penetration 

Angle 
Ar 

+ 30 '  

(m m) 

0 . 1 3 4  

- 3 0  t 0 . I  3 4 5 4  

- 2 0 1  0.1 3 4 6 1  

- I 0 1  0.1 34 54 

01 0.I 3 4 4 7  

+10 ~ 0.1 3 4 5 7  

+ 20 ~ 0.1 34 46 

46 

\/ 
l C 

No systematic changes were detected. The probable 
errors in the data listed in Table l(a)and (b)were 0.030 
and 0.029 % respectively. The probable error in each 
of the data arising from the measurement of the dis- 
tances was about 0.02 %.* Therefore, the errors caused 
by misadjustment and the unevenness of the specimen 
were neglected. 
(2) It takes more than 50 hours to obtain a set of 
three interferograms. Therefore, whether the specimen 
and interferometer crystals moved must be investigated. 
For this purpose, interferometry fringes with and with- 
out specimen were taken alternately over a period of 
20 days and their spacings were compared. The results 
are listed in Table 2(a) and (b). The probable errors in 
these data were about 0.034 and 0.14% respectively. 
Since the means of the probable errors in A, and At in 
individual experiments were 0.015 and 0.13 % respec- 
tively, t it was again concluded that the crystal move- 
ment was negligibly small under the present exper- 
imental conditions. 

* According to Fisher's F-test (Lehmann, 1959), the b 
variance ao 2 among the set of data is about 1/30 of the w variance 
a~ within the individual data. 

1" For the spacing At, cr~~(1/30)o "2 and ao 2 is negligible for 
the spacing A~. 

Table 2. Aging tests 

(a) Ar 
Plate No. Days Ar (mm) 

62 --  0-13493 
64 3 0.13493 
66 6 0.13489 
68 13 0.13504 
70 20 0-13483 

(b) A~ 
Plate No. Days A, (mm) 

63 --  0"4439 
67 5 0.4453 
69 12 0.4454 
71 20 0"4433 

(3) According to the principles of interferometry, 
we may expect the spacing A0 to be independent of 
whether the beam B0 or B 9 is used. It seems worth 
while, therefore, to examine this experimentally. Table 
3 shows the comparison of the fringe spacings based 
on the B0 and B 9 beams. The difference was 0.12% 
without the correction for vertical divergence and was 
reduced to 0.03 % by use of the proper correction.* 

Table 3. The comparison between Ao values obtained 
from the beams Bo and B o 

Beam A0 (mm) 
B0 0"17420 + 0.00010 
Bg 0"17431 + 0"00007 

This result confirmed the validity of both the prin- 
ciple of the experiment and the correction for vertical 
divergence. Thus, in principle, both the B0 and Bg 
beams can be used for determining A0. In practice, 
however, it was much easier to determine the central 
line with the Bg beam by virtue of the two parallel 
lines, which can be interpreted as the margin enhance- 
ment produced by the direct beam in the section pat- 
tern of the M crystal. These parallel lines must be sym- 
metrical with respect to the central line of the B o beam. 
For this reason, the Bg beam was used in the following 
experiments. 

5. Corrections 

In this section, several corrections are discussed for 
possible errors which may exceed 0.02 %. The first four 
are referred to as the experimental errors while the re- 
mainder are those pertinent to theoretical principles. 

5.1 The linearity of the phases 
The assumption of the linearity of ~0c is true only 

when the crystal wedge is ideally shaped. When the 
specimen surfaces were wavy, not only the spacing A0 
but the spacing Ag would have variations with the ver- 

* The vertical correction for Bg is described in {}5"3. The 
correction for B0, which is different from that for Bg, can be 
found using similar principles. 
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tical height of the crystal. For most measurements of 
the sets of the 111 and 220 reflexions, for which Ag 
could be determined accurately, no appreciable varia- 
tion was noticed and the fringe spacings were deter- 
mined with an accuracy of about 0.03 %, which was 
comparable to the intrinsic error in the measurement 
of distance. For this reason, it was concluded that the 
linearity of ~c was sufficient. 

Next, we discuss the procedure for determining A0 
when ~ is not linear with the crystal height h. In gen- 
eral, it may be natural to take a polynomial approxima- 
tion 

N 
~,(h)= ~ gm hm . (9) 

m=0 

Obviously, ~ are zck (k" integers) at the maxima and 
minima of the fringes in the interference experiment. 
Thus, assuming the polynomial order N, we can deter- 
mine the coefficients e,, and the standard deviation cr 
of ~ by the method of least squares. In our experiment, 
it was recognized that o(N) decreased rather critically 
for a polynomial order N larger than N*. [Incidentally, 
N* was less than 4 in our experiments.] Once N* was 
fixed, by virtue of equation (7), we obtained the 
relation 

N* 

~oc(h)=flo+fllh=~or(h) - ~ ~m hm (10) 
m=0 

where ~c had already been confirmed as linear in h. 
By definition, 2~/fli is the fringe spacing A0. Since the 
values ~,(h) must be ~! (l: integers) at the maxima and 
minima of the fringes, Ao can be determined by the 
method of least-squares. Some numerical values of A0 
and the probable errors are shown in Table 4, as well 
as a(1 ) and a(N*). Although the present procedure re- 
sults in no significant change in A0, the probable errors 
e are improved appreciably. 

5.2 The departure from the symmetrical Laue condition 
Since the ideal geometrical condition was not attain- 

able, the deviation angle 0¢ defined in Fig. 7 was estim- 
ated experimentally by using the pair of wedge angles 
co and ~ of the section patterns for g and ~ reflexions. 
According to Appendix A, ~ is given as 

tan ~ - t a n  
tan ~= tan ~ + t a n  ~ cot 0B. (11) 

Since tan ~ must be constant for each specimen, 
values determined from various reflexions are averaged. 
The values of the correction factor (1 - t a n  2 0s tan 2 ~)ln 

contained in equation (6) are listed below. The correc- 
tion is negligible in other cases. 

Specimen Reflexion Correction factor 
II-1 333 0.9997 

111-2 333 0.9997 
11I-2 444 0-9995 

5.3 The vertical divergence of  the X-ray beam 
Since, in practice, the incident beam diverges ver- 

tically, the fringe spacings are magnified by a factor, 
depending on the distance (L) between the source and 
the entrance surface of the specimen and on the 
optical distance (l) between the entrance surface and 
the recording plate. From geometrical considerations, 
the experimental values of the spacings are given by 

Lo + lo 
Ao=(Ao)c - -  (12a) 

L0 

Ao=(Ao)c L° + l° (12b) 
Lo 

where the suffix c denotes the spacing in the case of an 
ideally parallel beam and suffixes 0 and g refer to the 
interferometry fringes and Pendell6sung fringes re- 
spectively. In deriving equation (12b), it is assumed 
that the optical paths are identical for the interfer- 
ometry experiments, both with and without the speci- 
men. The correction factor V to Ao/A o, therefore, is 
given by 

Lo La 

Throughout the experiment L0 and L o were about 440 
mm. Since L0 is very close to L o, the absolute accuracy 
is not important in view of the functional form of 
equation (13). The distances, lo and l o are about 50 mm, 
the exact value varying between individual experiments. 

(a) The estimation of  lo 
In the ideal case of the Pendell~Ssung experiment, the 

photographic plate must be set perpendicular to the 
diffracted beam EG1 on the counter arm* (see Fig. 5) 
and the rotation axis C of the counter arm is to be 
identical with the rotation axis E of the specimen. As 
a first trial, therefore, l o was estimated as /.cot 208, 
with l=  CqD, measured on the photographic plate. The 

* Precisely speaking, GI is the edge of the section topograph 
corresponding to the entrance point E. 

No. N* a(1) 

( x 10-3) 

1 3 1"0 
2 3 2"2 
3 2 1"6 
4 2 0"6 

Table 4. The linearity correction in Ao 

a(N*) Uncorrected (eq. 8) 

( ×  10 -4) A0 (mm) A0 ( × 10-4) 

4.2 0.19667 4.8 
6.9 0"19653 7"1 
5-2 0.17446 4.3 
3"3 0"17423 2"3 

Corrected (eq. I0) 

Ao (mm) A0 ( × 10-4) 
0"19665 2"9 
0"19659 4"3 
0"17447 2"8 
0"17416 2"7 
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direct beam D was recorded for low order reflexions. 
Then, 19 was expected to be constant. Unfortu- 
nately, the variation in 19 shown in Fig. 6 was noticed. 
Two causes are conceivable for this variation: (i) The 
rotation axis C does not coincide with the axis E, and 
(ii) the plate holder is not exactly perpendicular to the 
beam EG~. By taking account of these factors, the ra- 
dius of the circles G~ round the axis C is approximately 
given as 

R--  CG~ = lg+a . cos (208-  ~)  (14) 

where the distance a and the angle ~u are shown in 
Fig. 5. The distance l 9 is now estimated as 

19=l. (cot 208+6) (15) 

where 6 is the deviation angle due to the error in 
machining the plate holder (see Fig. 5). By definition, 
the radius R must now be constant instead of/ .cot  208. 
The angle 6 must also be constant throughout the ex- 
periments. 

i/ \ 
Y 

C 

I 

20  -'," A 

I 0220 

R 

G2 

(a)  (b) 

m 
Fig. 5. (a) The geometry for determining Ig (=EGz). (b) The 

geometry for determining 10 (=EA+AGz). E: The axis of 
crystal rotation. C: The axis of the counter arm. D: The 
direct image of the incident beam. GI" The image of the Bragg 
reflected beam in the Pendell6sung experiment. G2: The image 
of the Bg beam in the interferometry experiment. A: The 
intersection of the direct beam and the central line of the M 
crystal. Both G1 and G2 lie on the circle of radius R. 

With a trial value of 6, the corrected distance l 9 given 
by equation (15) was again plotted against 208. Ac- 
cording to equation (14), the functional form /9(208) 
must equal { R - a .  cos (20n-~,)}.  In practice the ex- 
perimental curves 19(208) were well represented by this 
form with ~t = 90 °. By this procedure, R and a could be 
determined for any trial value of 6. Once these were 
obtained, the values of l 9 for higher order reflexions 
were determined by means of the extrapolation of the 
curve /9(208). The choice of a reasonable value of 6 
will be mentioned later. 

(b) The estimation o f  the distance lo 
In the interferometry experiments, as shown in Fig. 

5(b), the counter arm was turned about the axis C and 
was set at an angle 20. The distance lo=EA +AG2 can 
be given as 

lo=19(20). {1 +cr(20)}. (16) 

Here, the distance/9(20) is estimated by interpolation 
of the curve 19(20B ) mentioned above. The correction 
term cr_~2 tan Ozzo. (O-Ozzo) amounts to 4 x 10 -3 in the 
present case. The angle 20 is measured directly to an 
accuracy better than 10 -2 , which is enough for deter- 
mining/o(20) and cr(20). 

Because L0 ~ _ Lg, the accuracy of V is essentially de- 
termined by the error in [/9(208)-lo(20)] , which is es- 
timated to be + 0.1 mm. Thus, finally, the accuracy of 
V is estimated to be about + 2 × 10 -4. 

(c) The estimation o f  the deviation angle 6 
In our experiments, a systematic discrepancy be- 

tween non-corrected values of IFgl and IF-91 was re- 
cognized for every reflexion. This discrepancy had been 
anticipated from the systematic variation of the dis- 
tance 19 , mentioned in the above section. In fact, we 
could minimize the discrepancy by selecting an opti- 
mum value of the deviation angle 6. In the following, 

1 the root S of  a variance defined by ~-~{([F+91 ) -  
g 

(IF_9[)} z is listed for each trial value of 6, where 
([F±o [) are the mean structure factors corrected by the 
factor V. 

fi a(mm) S × 104 

0 ° 1.69 121 
40' 0.95 43 

1°00 ' 0.57 9 
1°20 ' 0.31 45 
non-corrected value 57 

Table 5. The correction factor W due to temperature effects 

OM = 543 °K OM = 538 °K 
AT=5 ° AT= 10 ° AT=5 ° AT= 10 ° 

111 0"16 x 10-3 0.32x 10-3 0"17 x 10-3 0"33 x 10-3 
220 0"43 0"86 0"44 0"88 
333 1"45 2"91 1"48 2"97 
440 1-72 3'44 1"76 3"52 
444 2"58 5"17 2"68 5"28 
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440 

Bo 

Fig. 3. The section topographs of the 220 and 440 reflexions. 

(a) 

Bo 

BO 

220 

Bg 

(b) 

Fig. 4. Intexferometry fringes; (a) without and (b) with a wedge shaped specimen. 

[To face p. 75 
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Here, the figures in the column under  a are determined 
according to the procedures mentioned in § 5.3(a). F rom 
this list, the deviation angle ~ =  1 ° and the deviation 
distance a = 0 . 5 7  m m  were chosen as the best. These 
figures are reasonable f rom the point  of  view of the 
mechanical  accuracy of the apparatus used. With these 
values, IV-l[ amounts  to about  2 x 10 -4 for the set of  
111 reflexions and about  7 x 10 -4 for the 444 reflexions. 

5.4 The effects of temperature 
Because the mean  temperatures in the individual ex- 

periments were different as explained in § 3.3, correc- 
tions are required to the observed values IFol/Fol. It is 
obvious that  the effect of  thermal  expansion is can- 
celled out in IFol/IFol. 

An impor tant  correction is required owing to the 
effect of  the Debye-Wal le r  factor e -N in [Fol, where M 
is given by the standard formula  (James, 1962), 

M(T) - 6hz (s'-l~) z . mkON{¼+ #---~(xX)}. (17) 

In order to take a significant average over the different 
experiments, we need to mult iply by the correction factor 

W = e x p  [ M ( T ) -  3/(293)].  (18) 

Here, for convenience, the whole data are reduced to 
the values at 293 °K. An ambiguity may arise about  the 
Debye temperature ON. Actually, however, the cor- 
rection factors Wcalculated on the basis of  OM = 543 °K 
(Batterman & Chipman,  1962) and O N =  538 °K (Hat- 

tori, Kur iyama  & Kato, 1965) are close enough to each 
other, with an accuracy of 10 -4 as shown in Table 5. 
The linearity of the correction is also confirmed within 
this temperature range. Here, it seems worth mention- 
ing that the temperature dependence of the Debye 
function was calculated with the required accuracy, 
al though the temperature dependence of the Debye 
temperature was neglected. 

In the following table, the ratios of the standard de- 
viation tr and the structure factor IFgl are listed for each 
reflexion* in parts per thousand. 

Non-corrected Corrected 
111 1.52 1.51 
220 0.62 0.51 
333 2.25 2.00 
440 1.61 1.09 
444 0-02 0.35 

The corrected values of  G/lFol are smaller than the non- 
corrected values except for 444, for which the statistical 
treatment is meaningless since the number  N of the ex- 
periments was only two. For  this reason, the temper- 

N 
* Non-corrected: tr2= Nl-~l [~l{[Fol,- (IFgl~) }2 ] 

Corrected:tr2=~l-l-[~{WilFgl~-(WdFal~))2 ] 
The suffix i covers the individual experiments. 

(a) hhh series. 

Specimen 

I I -  1 

I I I -  1 

I I I - 2  

111 
g - g  

10-678 10.681 
10.655 10.644 5.830 
10.687 10.682 
10.646 10.630 5.825 
10.660 10.667 5.859 
10.667 10.674 5.834 
10.648 10.650 5.850 
10.640 10.652 5.829 
10.665 10.651 

Table 6. Ifol values 
333 

g 

5.848 

444 
- -g  g - -g  

5"833 

5"843 
5"838 
5"822 
5"853 

5-848 

am 0"008 0"008 0"014 " 0"011 
tr 0-015 0-018 0"013 0"011 

mean 10.661 10.659 5.839 5.840 
0.005 0.006 0.005 0.005 

- g  

5"399 
5"400 
5.409 
5.401 
0.008 
0.006 

5.404 
0"003 

4.167 

0.010 

(b) (hhO) series. 

Specimen 220 440 
g - -g  g 

I-- 2 8"459 8"456 5"400 
8"453 8"457 5"397 
8"463 8"466 5-413 

I -- 3 8"462 8"462 5"403 
o'm 0"008 0"007 0"008 

0"004 0"005 0"007 

mean 8-459 8.460 5.403 
0.002 0.002 0"004 

4-170 

0"012 
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ature correction with the use of Table 5 is regarded as 
significant. 

5.5 The effects of dispersion 
The Fourier coefficient F0 differs from 8Z by the 

dispersion correction 8(Af; + iAf;), Z being the atomic 
number of Si. According to Cromer (1965), Af t= 
Afo = 0.06 are given for Ag Kel radiation. In equation 
(6), therefore, the corrected value IF0[ = 112{1 +4.3 x 
10 -3 } was used. Theoretically speaking, the Fourier 
coefficient IFo[ should also be corrected for the disper- 
sion effect. However, because the g-dependence of the 
correction is not certain, the uncorrected values of IFol 
are listed in Tables 6 and 8. 

5.6 The refractive index of air 
Equation (1) assumes unity for the refractive index 

of air, na. If one takes into account the deviation 
5.5 × 10 -l° on the basis of the composition of standard 
air (American Institute of Physics Handbook, 1963), 
the correction factor [ 1 - ( h a - 1 ) / ( n c - 1 ) ]  must be ap- 
plied to IF01. The correction amounts to 5.6 × 10 -4. 

5.7 Nuclear Thomson scattering (N.T.S.) 
In view of the accuracy of the present experiment, 

the effects of N.T.S. cannot be neglected. The nuclear 
scattering amplitude is given by [(Ze)2/Me2]C, where M 
is the mass of the Si atom and C is the polarization 
factor. Thus, the atomic number Z in IF01 must be re- 
placed by Z[1 +(M/m)Z].The correction amounts to 
0.027 % for Si. Similarly, the correction must be made 
to the atomic scattering factor as follows: 

m 2 (19) ILIob--ILl + - ~  Z .  

It should be noted that the correction is significant for 
higher order reflexions because it is independent of 
scattering angle except for the polarization factor C, 
whereas the ordinary Thomson scattering decreases 
with increasing scattering angle. For example, correc- 
tions of 0.03 % and 0.09 % are required for the 111 and 
444 reflexions respectively. 

/7 (ram) 

5 2 . 0  

/ ~  51"0 
r T r m T T I T 4'0 2'0 0 2'0 40_-. 208 ° 

Fig. 6. The experimental curve for the distance lg = G1D. cot 
20B. 

5.8 Effects of absorption 
The correction for absorption was fully discussed by 

1 g ~ i r Kato (1968). Since tco=Fo/f~ and K-F~/F o are less 
than 0.01 in the present case, the absorption effects are 
negligibly small. 

6. Results and discussion 

The atomic scattering factors ILl are determined from 
the crystal structure factors IFol and are listed in Table 6. 
The IFgl values are calculated by equation (6) and 
corrected according to the proceJures de3cribed in § 5 
The figures in each column are obtained from entirely 
independent experiments. The figures in the same row 
are based on the fringe spacings A0, which are obtained 
from the common interferograms with and without 
specimens.* The standard deviations, at, of the indivi- 
dual ffgl values are derived from those of A0 and A o. 
Their averaged values, am are listed in Table 6. The at 
values, and accordingly am, are a little over-estimated 
because they are affected by the non-linearity of the 
fringe positions due to X-ray polarization (Hattori, 
Kuriyama & Kato, 1965) and absorption (Kato, 1968), 
whose effects have been disregarded in the present 
estimates. The dependence of am on the reflexion planes 
is partly due to this circumstance. 

At the bottom of each column, the mean value of 
Ifol and the standard deviations 9 taken over a set of 
independent experiments are listed. Below the aM row, 
the standard deviations a for the individual experiments 
are listed. By definition a = 1/N. ~ in which N is the 
number of experiments.]" 

From Table 6, one can draw the following conclu- 
sions. 

(1) Since the standard deviations am and a mentioned 
above are comparable, most of errors included in ILl 
are regarded as statistical errors in the measurement of 
the fringe distances. 

(2) The agreement between Ifol and If-ol justifies 
implicitly the correctness of the geometrical conditions 
in the present method. 

(3) The values for the sets of 111 and 333 reflexions 
show no correlation with the growth direction of the 
specimen. They, as well as the values for 220 and 440, 
are independent of the position of the crystal rod from 
which the specimens are prepared. Incidentally, the re- 
sult for the specimen from another source, for which 
the data required for the divergence correction (V) and 
the temperature correction (W) are unfortunately lack- 
ing, agrees also with the values listed in Table 6, within 
an accuracy of about 0.2 %. From these results, it is 
reasonable to conclude that the specimens used were 
free from internal strains. 

* However, the A0 are slightly different from each other 
because sets of fringes in different regions must be employed. 

t Roughly speaking, o'~ and az correspond to the variances 
a~ and azw+a~, respectively in Fisher's F-test (see the first 
footnote in §4). 
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Table 7. The [fol values of various authors* 

The abbreviations, HKKK, GW and HM are explained in the 
text. 

Index Present HKKK GW'~ HM 
8"478 (Mo) a 

111 10"664 10-98 10"72 8.448 "~ 
220 8"463 8.58 8"45 8"487 (Ag)(Mo) /'~b 
333 5"843 5"86 5.90 8.494 (Ag) ) 
440 5.408 5-41 5"36 
444 4"172 4"22 4"18 

(4.20)~ 

* The N.T.S. correction is omitted. 
1" reduced to Ag Kax values. 

Hattori & Kato (1966). 
(a) Hart & Milne (1969). 
(b) Hart & Milne (1970). 

In Table 7, [fol values averaged over g and ~g reflex- 
ions, omitting the N.T.S. correction, are compared 
with those of other authors. The values obtained by 
GiSttlicher & W/51fel (1959) and G/3ttlicher, Kuphal, 
Nagorsen & W/51fel (1959), (GW values), agree with 
the present values within an accuracy of less than 1% 
except If333[. Their method is based on intensity meas- 
urements on powder specimens. DeMarco & Weiss 
(1965) obtained ILl values from intensity measure- 
ments on single crystals. Their values also agree with 
the GW values to on accuracy of better than 1% in 
most cases.§ Jennings (1969) repeated the same exper- 
iment for 111 reflexions, but his value seems to be too 
large. 

The values of Hattori, Kuriyama, Katagawa & Kato 
(HKKK) (1965) based on the ordinary Pendell/Ssung 
method are systematically larger than the present ones, 
the discrepancy being predominant in lower order reflex- 
ions. In their experiment, the geometrical factor 
~b o = 1/c--0s co/sin (o/2 is determined directly by measuring 
the angle co ofreflexion topographs. Since the tip of the 
wedge-shaped topograph has strong contrast, the wedge 
angle is apt to be measured as too small. In addition, the 
Ifol values of lower order reflexions are more sensitive to 
errors in co. As described in connexion with equations 
(5) and (6), the present values are free from this cause 
of error. 

Hart  & Milne (HM) (1969) obtained values for IAz01 
by the ordinary Pendell/Ssung method. More recently, 
they have measured ILl by a different method which 
is based on the interference of the transmitted waves 
through two crystal slabs (Hart & Milne, 1970). Ac- 
cording to their statement, the Ag values of 1970 may 
include some experimental errors. If one assumes 
Cromer's (1965) values Af t=0 .06  (Ag) and 0.09 (Mo) 
as the dispersion correction, the mean of their three 
reliable values scaled on Ag values amounts to 8.454. 
Bearing the difference of the methods in mind, the 
agreement with the present results to within 0.12 % is 

§ Since the dispersion and temperature corrections are not 
clear in their data, their values are not included in Table 7. 

significant in the sense that fringe methods based on the 
dynamical diffraction phenomena are very reliable. 

The theoretical calculations of the electron distribu- 
tions in free atoms (Clementi, 1965) and in crystals 
(Jaros & Vinsome, 1969, 1970; Stukel & Euwema, 1970) 
are reported. Also, the method of analysing the data 
of the structure factors (Dawson, 1967a, b, c; McConnell 
& Sanger, 1970) is presented. The theoretical values of 
Debye-Waller factors, the dispersion corrections and 
the electron distribution itself, however, do not seem 
accurate enough to compare the theories and the experi- 
ment. For this reason we only present the experimental 
values of Ifol in Table 8. 

Table 8. The final results for the atomic scattering 
factors of Si at 20 °C 

Indices If l Max. deviation Prob. error 
11 l 10"660 0.26 % 0.02 % 
220 8"460 0.08 0.01 
333 5"839 0.34 0.04 
440 5"404 0" 17 0"03 
444 4" 168 0"03 - 

In these values, the correction for the nuclear Thom- 
son scattering is taken into account according to equa- 
tion (19). They are scaled to the values at 20°C. The 
dispersion correction in ILl itself is not taken into ac- 
count although this correction is included in IF01. If 
the accurate value of the dispersion correction Af '  is 
obtained in future, the above results must be revised 
according to the procedures described in § 5.5. 

X-rays 

X-rays I ~  ~'' 

X ' ! ~ R ~ T : q j  -- X . . . . . .  W ...... 

AI t" / 

///"~E.N" / 

2~/,~../~f_/~,/H (b) 

(a) 

Fig. 7. (a) The horizontal section at a height H. (b) The section 
topograph of the Pendell6sung experiment; the vertical 
view. (c) The vertical section of the crystal through the 
lattice plane EN. The broken line in (a) shows the edge of 
of the wedge specimen. The meanings of h, y, r/, and 0 are 
described in the text. 
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A P P E N D I X  A 
The ratio of the geometrical factor, A = ~ g / ~ 0  

Fig. 7, which is to be referred to in the following dis- 
cussion, is drawn for the crystal under the conditions 
of the PendellSsung experiments. In the interferometry 
experiments, the crystal is rotated so that the lattice 
plane (EAr) coincides with the incident beam ET. The 
vertical view (c) can be commonly used for both the 
experiments. In the interferometry experiments, the 
geometrical factor 40 is written as 

Ao Ah 
4°=  A--~-- A~o (A1) 

where h and Q are the distances along the vertical and 
horizontal directions in the net plane, and A indicates 
the increment corresponding to a single fringe spacing. 

In the Pendell/Ssung experiments the bisector y of the 
section topograph, on which the fringe spacing 
Ao(=Ay ) is measured experimentally, does not gen- 
erally coincide with the projection line (1/) of the inter- 
section of the lattice plane and the the exit surface.* 
The geometrical factor ~g is then written in the form 

Ag Ay Aq Ah (A2) 
~g----ACg - Arl Ah AO" 

Owing to the hyperbolic form of Pendell6sung fringes, 
the distances y and r/are connected by 

r/Z sin ( 2  + 8) s i n ( 2 - e )  =y2sin2 2 

which gives us the relation 

Ay 1 
Arl . co sln-~- 

l /s in  ( 2  +e) sin ( 2  - e  ) (A3) 

where e is the angle between the directions, y and r/, and 
the angle co is the wedge angle of the topograph. In 
addition, we know that 

A~ 1 
A--h-- = (A 4) 

where ~ is the inclination angle between the vertical 
direction and the edge W'R' in the section topograph 

* This was first pointed out by T. Katagawa in our labor- 
atory. 

corresponding to the entrance surface.]" Combining the 
equations (A 1) to (A4), we obtain 

A= ~bo ] / s i n ( 2 + e )  s i n ( 2 - e )  
40 = . (A5a) 

sin -~- cos + e -  

Now, we shall rewrite this in such a way as to eliminate 
the angle e, which is difficult to determine experiment- 
ally. For convenience, we shall introduce 

E = t a n  ( 2  +e ) . (A6) 

Then, we have 

cos 

sin (-~ -8)=(sinco-Ecosco)lll-l+E' 

c o s  

and, from these, 

A - 1 V E (sin co- E cos co) . (-4 5b) 
sin ( 2 )  (cos ~+Es in  y)2 

In Fig. 7(a) and (b) 

R 'N '= r / s in  ( 2  +e)/cosT=osinOB=FN 

T 'N '= r / s in  ( 2  -e)/cos(co-7)=BQsinOn=GN 

where 
cos  ( 0 .  + ~) 

B= 
cos  ( 0 . - ~ )  " 

By taking the ratio R'N'/T'N', it is seen that 

E =  (sin co cos 7)/[cos co cos ~ + B cos (co- 7)]. 

Substituting this into equation (A 5b), we obtain 

c°s ( 2 )  4B cosco - 

where the second factor can be written in the con- 
venient form 

/ = l / l - t a n  5 0B tan 2 e (A7) 
4B 

t For generality, we shall treat the case y + O. 
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In the present experiments, the angle ), can be measured 
directly from the angle between the edge R'  W' and the 
direct image of the direct beam, for low order refex- 
ions. For higher order reflexions, the angle ?, is esti- 
mated by 

2 sin 0B 
tan ~, = 1 + tan 0B tan e tan F ,  (A 8) 

where F is the inclination angle between the entrance 
surface and the vertical plane. In all cases, F was con- 
firmed experimentally to be less than 5' (cf. § 3.3). The 
third factor in equation (A 5c), therefore, is estimated 
to be less than 0.6x 10 .5 for 111 and 1.2x 10 .4 for 
444. For this reason, this factor is omitted in equation 
(5). 

Finally, tan a in equation (A 7) is written in a more 
practical form by using a pair of wedge angles co and 
for g and ~, reflexions. Since the factor is regarded as a 
correction and the angle 7 is small in our experiments, 
the entrance surface, and consequently the edge R ' W ' ,  
are assumed to be vertical. From Fig. 7(a) and (b), we 
can see that 

h tan co = ~ sin Oa. {1 + B } .  

For reverse reflexion, using - ~  instead of e in the fac- 
tor B, we have 

h t a n ~ = Q  sin 0B .{1+ 1 } .  

By taking the ratio of the above two, we obtain equa- 
tion (11). Since co and c5 are obtained from a pair of 
the topographs ofg and fg reflexions, tan e is determined 
experimentally. 
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